Week 1 | T&L Activities:3.1 Data, information and knowledge3.1.1 The differences and relationships between, data, information and knowledge.1. Data
2. Information
3. Knowledge
3.1.2 The sources for generating data:Human (Surveys, Forms)Humans generate data whenever they give information directly – for example, filling in a form, survey, or feedback questionnaire. This is usually self-reported data (what a person chooses to share). (Digital Support & Security):
Artificial Intelligence (AI) / Machine Learning – Dangers of Feedback LoopsAI and machine learning systems create data as they learn from user behaviour. A feedback loop happens when the AI uses its own output as new input, which can lead to bias or errors being reinforced. (Digital Support & Security):A cybersecurity monitoring tool that uses machine learning to detect suspicious logins could wrongly flag normal student behaviour (like logging in late at night) as a threat. If those false alarms are fed back into the system as “evidence,” it may become overly strict and block real students from logging in.
Sensors (Temperature, Accelerometer, Vibration, Sound, Light, Pressure)Sensors collect data from the environment. They measure physical things like heat, movement, sound, or light. (Digital Support & Security): Internet of Things (IoT) – Smart ObjectsIoT devices are everyday objects connected to the internet (e.g., smart lights, thermostats, security cameras). They collect and send data automatically. (Digital Support & Security): Transactions (Customer Data, Membership, Timing, Basket)
(Digital Support & Security):
"Data Detectives"
3.1.3 Ethical data practices and the metrics to determine the value of data:Ethical Data Practices & Metrics to Determine Data Value Before we dive into the metrics, remember:
Now, let’s explore the metrics used to decide how valuable data is. Quantity
(Digital Support & Security):
TimeframeTimeframe is about when the data was collected and how long it remains relevant. Recent data is often more valuable than old data. (Digital Support & Security): Don’t keep data longer than necessary. For example, student support tickets might be deleted after a year once resolved. SourceThe value of data depends on where it comes from and how trustworthy the source is. (Digital Support & Security): Login data from the college’s own servers = reliable source. A random spreadsheet emailed by an unknown user = unreliable (could be fake or manipulated). Always check sources and avoid using stolen or illegally obtained data. VeracityVeracity means the accuracy and truthfulness of data. Data full of errors or lies is less valuable. (Digital Support & Security): Organisations should clean and validate data, and not mislead people by presenting false or incomplete results.
3.1.4 How organisations use data and information:Analysis to Identify PatternsOrganisations look at large sets of data to find trends, behaviours, or repeated issues. Patterns help predict future events and improve decision-making. The IT support team analyses helpdesk tickets and notices that every Monday morning, many students report Wi-Fi login problems. The pattern suggests that systems might need restarting after the weekend. Google analyses search trends (e.g., millions of people suddenly searching for the same issue). This helps them detect outbreaks of cyberattacks or bugs spreading online. System Performance Analysis (Load, Outage, Throughput, Status)
Amazon Web Services (AWS) constantly monitors its cloud servers. If a data centre goes down, traffic is automatically re-routed to another server to prevent downtime for customers. User Monitoring (Login/Logout, Resources Accessed)Organisations track user activity to ensure systems are being used correctly and securely. A college IT team monitors who logs into the Virtual Learning Environment (VLE). If a student logs in from two countries within the same hour, it may indicate a hacked account. Microsoft 365 monitors user logins across the world. If an account logs in from London and then five minutes later from New York, it may block the login and alert security teams. Targeted Marketing (Discounts, Upselling)Organisations use data about customer behaviour to send personalised offers, suggest upgrades, or advertise products people are likely to buy. A college esports society collects data on what students buy in the online shop. If a student buys a gaming jersey, they might get an email offering a discount on a matching mousepad. Steam (Valve) analyses what games you play and recommends new titles you’re likely to enjoy. They also send personalised sale notifications to encourage more purchases. Threat/Opportunity Assessment (Competitors, Security, Compliance)Organisations analyse data to spot risks (threats) or advantages (opportunities). This can relate to cybersecurity, business competition, or legal compliance. The IT security team compares data about phishing attempts with government alerts from the NCSC (National Cyber Security Centre). If a new type of phishing attack is targeting colleges, they can prepare staff with updated training – turning a threat into an opportunity to strengthen security.
"Data in Action"
3.1.5 Interrelationships between data, information and the way it is generated and make judgements about the suitability of data, information and the way it is generated in digital support and security.What this means
These three parts are linked together:
If the data is incomplete, biased, or collected in the wrong way, the information may not be suitable for decision-making. "A College Cybersecurity Incident Response" How the interrelationships work:
Real-World Industry ExampleNHS Digital (UK Health Service) collects data from hospital IT systems about cyber incidents. In 2017’s WannaCry ransomware attack, logs showed unusual traffic patterns while staff reported being locked out of systems. By combining both machine data (network logs, malware signatures) and human-reported issues, NHS Digital was able to coordinate with cybersecurity agencies to restore services and improve future protections. This demonstrates how data, information, and generation methods must work together to make correct security decisions. "Data to Information Detective" Files that support this week | English:
|
Assessment:
|
Learning Outcomes:
|
Awarding Organisation Criteria:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Maths:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Stretch and Challenge:
|
E&D / BV | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Homework / Extension:
|
ILT | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
→ | → | → | → | → | → | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Week 2 | T&L Activities:3.2 Methods of transforming data3.2.1 Methods of transforming data:When organisations collect data, it is often raw and not immediately useful. To make it valuable, it must be transformed. The main methods are:
Manipulating Data
A college IT support team exports login data from the network. At first, it’s just thousands of rows of timestamps and usernames. By manipulating the data (sorting by user, filtering failed attempts), they quickly see which accounts have repeated login failures. Splunk and Elastic (ELK Stack) are widely used in cybersecurity to manipulate and search through huge log files, making it easier to spot patterns of suspicious behaviour
Analysing Data
After manipulating login records, the IT team analyses them and notices that 80% of failed logins happen between midnight and 3 a.m. This unusual pattern suggests a brute-force attack. IBM Security QRadar analyses logs from multiple systems (firewalls, servers, apps) to detect cyber threats by identifying unusual traffic patterns.
Processing DataConverting raw data into a different format or structure so it can be used by systems, applications, or people. Processing often involves automation. A system collects sensor data from a server room (temperature, humidity). This raw data is processed into a dashboard that shows “green, amber, red” warnings. IT staff don’t need to read every number – the processed data tells them instantly if action is needed. SIEM (Security Information and Event Management) tools like Azure Sentinel automatically process logs from thousands of endpoints and generate alerts for IT teams.
You are part of a college IT security team. Below is some raw login data:
Files that support this week | English:
|
Assessment:
|
Learning Outcomes:
|
Awarding Organisation Criteria:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Maths:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Stretch and Challenge:
|
E&D / BV | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Homework / Extension:
|
ILT | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
→ | → | → | → | → | → | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Week 3 | T&L Activities:3.3 Data taxonomyWhat is a Taxonomy? Think of a taxonomy like a family tree, but for data. It’s a way of splitting things into groups so we know what type of data we’re dealing with.
3.3.1 Definition of qualitative and quantitative, its purpose, and how data is categorisedQuantitative quantitative data – which basically means numbers. If you can count it or measure it, it’s quantitative. Two Types of Quantitative Data can be Discrete Data
“How many login attempts failed this morning?” and you answer “7”, that’s discrete data. Continuous Data
“What’s the server temperature right now?” and it says “23.5°C” – that’s continuous data. Both are useful, but in different ways:
Take Amazon Web Services (AWS) they’re running thousands of servers worldwide they use discrete data to count login attempts and block suspicious ones. At the same time, they use continuous data to monitor server performance. If both types spike at once, they know something is wrong.
Qualitative. What is Qualitative Data? Qualitative data is about descriptions, opinions, and categories rather than numbers. Types of Qualitative Data; Categorical (or Nominal) Data Data that can be sorted into groups, but the groups don’t have a natural order.
It’s like labels – they tell you what “type” something is, but not which one is bigger or better.
Ordinal Data Data that can be put in a ranked order, but the gaps between them aren’t necessarily equal.
So ordinal data has a sense of order, but it’s not really about numbers. “High risk” is more serious than “Low risk,” but we can’t say it’s exactly “two times” more serious. Quantitative data is great for spotting patterns in numbers – but qualitative data adds the human side:
NCSC (National Cyber Security Centre, UK): They collect quantitative data about how many phishing emails are reported but they also collect qualitative data from feedback surveys asking staff how confident they feel spotting phishing emails, by combining the two, they can judge not just how many phishing attempts are happening, but also how well people are prepared to deal with them.
3.3.2 Know the definition for structured data, understand its purpose, and understand that quantitative data is structured. 3.3.3 Know the definition for unstructured data, understand its purpose, and understand that qualitative data is unstructured. 3.3.4 Know the definition for each representation and understand the representations of quantitative data: • discrete values • continuous values • categorical values. 3.3.5 Know and understand the properties of qualitative data: • stored and retrieved only as a single object • codified into structured data. 3.3.6 Understand the interrelationships between data categories data structure and transformation and make judgements about the suitability of data categories, data structure and transformation in digital support and security.
Files that support this week | English:
|
Assessment:
|
Learning Outcomes:
|
Awarding Organisation Criteria:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Maths:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Stretch and Challenge:
|
E&D / BV | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Homework / Extension:
|
ILT | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
→ | → | → | → | → | → | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Week 4 | T&L Activities:3.4 Data types3.4.1 The definition of common data types, their purpose, and when each is used:Integer (Whole numbers)What/why: Whole numbers (no decimal point). Efficient for counting, indexing, quantities, IDs.
Real (Floating-point / Decimal)What/why: Numbers with fractional parts.
Character (Char)What/why: A single textual symbol (one character).
String (Text)What/why: Ordered sequence of characters (words, sentences, IDs).
Boolean (True/False)What/why: Logical truth value with two states.
Date (and Date/Time)What/why: Calendar date (optionally time and timezone).
BLOB (Binary Large Object)What/why: Arbitrary binary data (files) stored as a single value.
3.4.2 The interrelationships between structured data, unstructured data and data type.In today’s digital world, organisations gather information in many different forms – from neatly organised spreadsheets of customer transactions to complex streams of emails, images, and social media posts. To make sense of this, we look at three key concepts: structured data, unstructured data, and data types. Structured data is highly organised, stored in predefined formats such as rows and columns within a spreadsheet or database. This makes it straightforward to search, filter, and analyse. Examples include account numbers, dates of birth, and purchase amounts. Structured Data
By contrast, unstructured data has no fixed format or schema, making it harder to process. It includes content such as emails, audio recordings, images, videos, or free-text survey responses. While it carries rich insights, it requires more advanced tools and techniques to interpret. Unstructured Data
At the foundation of both lies the concept of data types. A data type defines how a particular piece of information is stored and used – for instance, an integer for whole numbers, a string for text, or a blob for multimedia. Structured systems rely on data types to keep information consistent, while unstructured data is often stored in broader types like text fields or binary objects to preserve its form. Together, these three elements form the backbone of how data is represented, stored, and ultimately transformed into meaningful information. Examples in Practice
Case Studies Case Study 1: Healthcare – NHS Patient Records
Case Study 2: Cybersecurity – Threat Detection
Case Study 3: Retail – Amazon Recommendations
3.4.3 Understand the interrelationships between data type and data transformation.
3.4.4 Be able to make judgements about the suitability of using structured data, unstructured data, data types, and data transformations in digital support and security.
Files that support this week | English:
|
Assessment:
|
Learning Outcomes:
|
Awarding Organisation Criteria:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Maths:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Stretch and Challenge:
|
E&D / BV | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Homework / Extension:
|
ILT | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
→ | → | → | → | → | → | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Week 5 | T&L Activities:3.5 Data formats3.5.1 Know the definition of common data formats and understand their purpose and when each is used: • JSON • Text file • CSV • UTF-8 • ASCII • XML.
3.5.2 Understand the interrelationships between data format and data transformation, and make judgements about the suitability of using data formats in digital support and security. Files that support this week | English:
|
Assessment:
|
Learning Outcomes:
|
Awarding Organisation Criteria:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Maths:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Stretch and Challenge:
|
E&D / BV | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Homework / Extension:
|
ILT | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
→ | → | → | → | → | → | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Week 6 | T&L Activities:3.6 Structures for storing data3.6.1 Understand the role of metadata in providing descriptions and contexts for data.
3.6.2 Know the definition of file-based and directory-based structures and understand their purposes and when they are used.
3.6.3 Know the definition of hierarchy-based structure and understand its purpose and when it is used.
3.6.4 Understand the interrelationships between storage structures and data transformation. Files that support this week | English:
|
Assessment:
|
Learning Outcomes:
|
Awarding Organisation Criteria:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Maths:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Stretch and Challenge:
|
E&D / BV | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Homework / Extension:
|
ILT | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
→ | → | → | → | → | → | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Week 7 | T&L Activities:3.7 Data dimensions and maintenance3.7.1 Know the definitions of the six Vs (dimensions) and understand the six Vs (dimensions) of Big Data and their impact on gathering, storing, maintaining and processing: • volume • variety • variability • velocity • veracity • value. 3.7.2 Know the definition of Big Data and understand that it has multiple dimensions. 3.7.3 Understand the impact of each dimension on how data is gathered and maintained. 3.7.4 Know the definitions of data quality assurance methods and understand their purpose and when each is used: • validation • verification • reliability • consistency • integrity • redundancy. 3.7.5 Know and understand factors that affect how data is maintained: • time • skills • cost. 3.7.6 Understand the interrelationships between the dimensions of data, quality assurance methods and factors that impact how data is maintained and make judgements about the suitability of maintaining, transforming and quality assuring data in digital support and security. Files that support this week | English:
|
Assessment:
|
Learning Outcomes:
|
Awarding Organisation Criteria:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Maths:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Stretch and Challenge:
|
E&D / BV | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Homework / Extension:
|
ILT | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
→ | → | → | → | → | → | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Week 8 | T&L Activities:3.8 Data systems3.8.1 Know the definition of data wrangling and understand its purpose and when it is used.
3.8.2 Know and understand the purpose of each step of data wrangling: • structure • clean • validate • enrich • output.
3.8.3 Know and understand the purpose of each core function of a data system: • input • search • save • integrate • organise (index) • output • feedback loop.
3.8.4 Know the types of data entry errors and understand how and why they occur: • transcription errors • transposition errors.
3.8.5 Know and understand methods to reduce data entry errors: • validation of user input • verification of user input by double entry • drop-down menus • pre-filled data entry boxes.
3.8.6 Know and understand the factors that impact implementation of data entry: • time needed to create the screens • expertise needed to create screens • time needed to enter the data.
3.8.7 Understand the relationship between factors that impact data entry and data quality and make judgements about the suitability of methods to reduce data entry errors in digital support and security.
3.8.8 Understand the relationship between factors that impact implementation of data entry and make judgements about the suitability of implementing data entry in digital support and security. Files that support this week | English:
|
Assessment:
|
Learning Outcomes:
|
Awarding Organisation Criteria:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Maths:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Stretch and Challenge:
|
E&D / BV | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Homework / Extension:
|
ILT | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
→ | → | → | → | → | → | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Week 9 | T&L Activities:3.9 Data visualisation3.9.1 Know and understand data visualisation formats and when they are used: • graphs • charts • tables • reports • dashboards • infographics. 3.9.2 Know and understand the benefits and drawbacks of data visualisation formats based on: • type of data • intended audience • brief. Files that support this week | English:
|
Assessment:
|
Learning Outcomes:
|
Awarding Organisation Criteria:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Maths:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Stretch and Challenge:
|
E&D / BV | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Homework / Extension:
|
ILT | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
→ | → | → | → | → | → | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Week 10 | T&L Activities:3.10 Data models3.10.1 Know the types of data models and understand how they organise data into structures: • hierarchical • network • relational.
3.10.2 Know and understand the factors that impact the selection of data model for organising data: • efficiency of accessing individual items of data • efficiency of data storage • level of complexity in implementation.
3.10.3 Understand the benefits and drawbacks of different data models and make judgements about the suitability of data models based on efficiency and complexity.
3.10.4 Be able to draw and represent data models: • hierarchical models with blocks, arrows and labels • network models with blocks, arrows and labels • relational models with tables, rows, columns and labels. Files that support this week | English:
|
Assessment:
|
Learning Outcomes:
|
Awarding Organisation Criteria:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Maths:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Stretch and Challenge:
|
E&D / BV | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Homework / Extension:
|
ILT | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
→ | → | → | → | → | → | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Week 11 | T&L Activities:3.11 Data access across platforms3.11.1 Understand the features, purposes, benefits and drawbacks of accessing data across platforms: • permissions o authorisation o privileges o access rights o rules • access mechanisms: o role-based access (RBAC) o rule-based access control (RuBAC) o Application Programming Interfaces (API).
3.11.2 Know and understand the benefits and drawbacks of methods to access data across platforms.
3.11.3 Understand the interrelationships between data access requirements and data access methods and make judgements about the suitability of accessing data in digital support and security. Files that support this week | English:
|
Assessment:
|
Learning Outcomes:
|
Awarding Organisation Criteria:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Maths:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Stretch and Challenge:
|
E&D / BV | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Homework / Extension:
|
ILT | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
→ | → | → | → | → | → | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Week 12 | T&L Activities:3.12 Data analysis tools3.12.1 Know data analysis tools and understand their purpose and when they are used: • storing Big Data for analysis: o data warehouse o data lake o data mart • analysis of data: o data mining o reporting • use of business intelligence gained through analysis: o financial planning and analysis o customer relationship management (CRM): – customer data analytics – communications.
3.12.2 Understand the interrelationships between data analysis tools and the scale of data Files that support this week | English:
|
Assessment:
|
Learning Outcomes:
|
Awarding Organisation Criteria:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Maths:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Stretch and Challenge:
|
E&D / BV | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Homework / Extension:
|
ILT | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
→ | → | → | → | → | → |